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Abstract 

Road signs, the main communication media towards the drivers, play a significant role in road 
safety and traffic control through drivers’ guidance, warning, and information. However, not all 
traffic signs are seen by all drivers, which sometimes lead to dangerous situations. In order to 
manage safer roads, the estimation of the legibility of the road environment is thus of importance 
for road engineers and authorities who aim at making and keeping traffic signs salient enough to 
attract attention regardless of the driver's workload.  

Our long term objective is to build a system for the automatic estimation of road sign saliency 
along a road network, from images taken with a digital camera on-board a vehicle. This system 
will be interesting for accident analysis and prevention since it will enable a fine diagnostic of 
the road signs saliency, helping the road manager decide on which signs he must act and how 
(replacement or background modification). This should lead to improved asset management, 
road infrastructure maintenance and road safety. 

What attracts driver's attention is related both to psychological factors (motivations, driving task, 
etc.) and to the photometrical and geometrical characteristics of the road scene (colours, 
background, etc.). The saliency (or conspicuity) of an object is the degree to which this object 
attracts visual attention for a given background. Road signs perception depends on the two main 
components of visual attention: objects pop-out and visual search. The first one is less relevant 
when the task is to search for a particular object, whereas one important part of the driving task 
is to look for road signs.  

As most of current computational models of visual search saliency are limited to laboratory-
situations, we propose a new model to compute visual search saliency in natural scenes. Relying 
on statistical learning algorithms, the proposed algorithm emulates the priors a driver learns on 
object appearance for any given class of road signs. The algorithm performs both the detection of 
the object of interest in the image and the estimation of its saliency. The proposed computational 
model of saliency was evaluated through psycho-visual experiments. This opens the possibility 
to design automatic diagnostic systems for road signs saliency. 

1. Introduction 

The points on which the driver focuses his gaze depend on the traffic situation, on the ongoing 
driver task and on the saliency of the objects relative to their background. Visual attention 
(Knudsen, 2007) can be thought of as a two components process: object pop-out and visual 
search. These two components are mixed during vehicle driving. The object pop-out is only due 
to the high saliency of the object which attracts attention, independently of the ongoing task. It is 
a bottom-up process which applies when, for instance, an observer is looking at a meaningless 
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picture. The visual search which is a top-down process. It consists in a goal-driven process 
linked to voluntary attention, which depends on the driver’s experience, the current task and 
motivation. Searching for a specific detail in a picture is an example of pure visual search. 

 

   

Figure 1: On the left, the focus of attention predicted by a bottom-up model (Itti, 1998). On the 
middle, focus points predicted as salient by our model for the search of no entry signs. On the 
right, scan-path of a subject searching for no entry signs. The focus points are labelled in 
decreasing order with a number inside each circle. 

Although several computational models of the saliency for object pop-out have been proposed in 
the last decade, due to the complexity of human behaviour, it is only very recently that a few 
computational models of the saliency for visual search have been proposed. The most popular 
computational saliency model was proposed in (Itti, 1998). This algorithm computes a bottom up 
saliency map based on a modelling of the low levels of the Human Visual System (HVS). This 
model was tested against oculometric data and it succeeds when the observer task is to memorize 
images, but as expected, it fails when the task is to search for an object, see (Underwood and 
others, 2006). Fig. 1 illustrates this limit on a road scene: on the left the focus points predicted by 
(Itti, 1998) are incorrectly spread on the whole image, whereas the observed scan-path is mostly 
along the line of horizon as displayed on right image.  

To design an automatic system for the estimation of road sign saliency along a road network 
from images, a computational model of search saliency is thus requested. Until recently, there 
was no complete computational model, only theoretical models of the search saliency or 
computational models working only on simple laboratory situations and thus not on road 
environment. As a consequence, in (Simon and others, 2007), we proposed a new computational 
model of search saliency, based on learning the appearance of the sign(s) of interest in the 
images. As explained first in (Simon and others, 2007), our paradigm consists in linking the 
confidence in the detection with the search saliency, see section 2. Then, the approach was tested 
by psycho-visual experiments on no-entry sign, as described in section 3. 

2. Saliency estimation based on sign appearance learning 

The visual search task for a road sign is a detection problem in terms of pattern recognition.  The 
search saliency of a given sign can be thus interpreted as a measure of the difficulty to detect it in 
an image.  

2.1 Saliency estimation paradigm 

To perform road sign detection in images, we used recently developed statistical learning 
algorithms. The learning is performed from a set of positive and negative examples of the signs 
to be detected, each example being represented as a feature vector. Positive feature vectors are 



 Transport Research Arena Europe 2010, Brussels 

samples of the appearance of the sign, while negative feature vectors are samples of the 
appearance of a possible background, see Fig. 2. This set of positive and negative vectors is 
usually called the learning database. From this database, the Support Vector Machine (SVM) 
algorithm (Schölkopf and Smola, 2002) is able to infer the frontier which splits the feature space 
into positive and negative parts. After this learning stage, the resulting classifier is able to set a 
positive or a negative label to any new feature vector, i.e to any window in a new image.  This 
classifier can thus be used to perform sign detection in an image at several scales using sliding 
windows. 

 

        

        

Figure 2: Positive (top) and negative (bottom) samples of the appearance of a no-entry sign. 

The main advantage of the SVM is that the resulting classification function gives continuous 
values and not only binary values as with most classification algorithms. This classification 
value is related to the confidence in the pattern recognition: when it is higher than one, the 
recognition is positive, when it is lower than zero, the recognition is negative. The closer to zero 
the classification value is, the more hazardous the recognition decision. Our paradigm is thus to 
rely on a learning algorithm for modelling the appearance of the object of interest, and to define 
the search saliency of a given window image as a function of the classification value.  

The input of the SVM algorithm, the learning database, is a set of feature vectors with positive or 
negative labels. In (Simon and others, 2008) are described the experiments which allowed us to 
select which features are adequate to represent the appearance of an image window. We found 
that a simple colour histogram is enough with the objective of “no-entry” sign detection for 
saliency estimation. The choice of the kernel is also of importance to achieve correct detection 
performance. As detailed in (Simon and others, 2008), the best choice appears to be the power 

kernel 
α

')',( xxxxk −=  which allows for implicit adaptation to the data density, unlike most 

classical kernels (α=1 in the following).    

2.2 Saliency map 

 

Figure 3: Scheme for the computation of the search saliency. 

 



 Transport Research Arena Europe 2010, Brussels 

The SVM classifier is applied at different scales on sliding windows in a road image. Each scale 
results in a confidence map at a given scale of the positive classification values. The global 
confidence map for an image is built as the maximum of the confidence maps over the various 
scales. Finally, to take into account the saliency of the background around each detected road 
signs, the global confidence map is corrected by subtracting its local mean over the so-called 
background-window. The size of the background-window is of constant angular value set to 2 
degrees, from our experiments in (Simon and others, 2009). The resulting map is defined as the 
Background related Computed Saliency (BCS) map. Notice that the BCS is independent of the 
size of the detected object, whereas it is known that the size plays an important role in the 
saliency. Thus, the positive connex components are extracted from the BCS map and for each 
component i the Search Computed Saliency (SCS) is computed as: 

4 )()()( iAiBCSiSCS =  

where BCS(i) is the average BCS over the connex component i and A(i) is its area. The search 
saliency of each road sign can be summarized by Fig. 3. 

The field of applications of this computational model is not limited to the estimation of road 
signs saliency by inspection vehicle; it should also serve Advanced Driver Assistance Systems 
(ADAS), as explained in (Simon and others, 2009).  

3. Experiments 

3.1 Apparatus 

 

 

 

Figure 4: Psycho-vision laboratory, including an eye-tracker system used for psycho-visual 
experiments. 

 

In order to test the proposed model, we conducted experiments in a display room which is 
photometrically controlled, as shown in Fig. 4. The room consists in subject's and advisor's 
screens. The display device is equipped with a remote eye-tracker (SMI) which tracks the 
subject’s gaze to record fixations positions and duration with an accuracy of 0.5 degree at a 
frequency of 50Hz. The screen is 19'' wide with a viewing distance of 70 cm. Thus, the subjects 
saw the road scene with a visual angle of 20 degrees. For each subject, 40 road images were 
displayed, containing a total of 76 no-entry signs. These images were selected with various sign 
appearances and background, leading to a large variety of saliency levels for the observed signs. 

  



 Transport Research Arena Europe 2010, Brussels 

3.2 Detection score and subjective saliency 

Thirty subjects were asked to pretend they were drivers of the car from which the images were 
taken. The experiment consisted in two phases. In the first phase, the subjects were asked to 
count the no-entry signs, knowing that images would disappear after 5s. In the second phase, the 
subjects were asked to rate the saliency of each no-entry sign by giving a score between 0 and 
10. 

The analysis of the gaze fixations associated with the subjects answers (reported number of no-
entry signs) allowed us to know whether the subjects detected each displayed no-entry sign. For 
a given sign, the mean percentage of detection over all subjects gives the Human Detection Rate 
(HDR).  

In the second phase, due to the subjects variability in the use of the score scale, all scores were 
standardized enforcing for each subject the same Gaussian law with mean value 5. Subject 
Standardized Score saliency (SSS) (subject index i), related to subjective saliency (of sign j), is 
defined by:  
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3.3 Results 

We first checked that the average detection rate HDR is related to the Subjective Standardized 
Score (SSS). As illustrated in the left of Fig. 5, the greater the SSS, the greater the HDR. This 
correlation between the subjective saliency score and the correct detection rate supports the 
proposed paradigm: the search saliency is an evaluation of the difficulty to detect an object. 

Then, we studied the correlation between the Subjective Standardized Score (SSS) and the 
Search Computed Saliency (SCS). As shown in the right of Fig. 5, a linear relation can be 
observed between the SSS and the SCS. As a consequence, the proposed computational model of 
search saliency is correlated with the subjective saliency. The link between the HDR and SSS   
implies that the SCS is also correlated to the Human Detection Rate (HDR) which is a saliency 
indicator. 

 

  

Figure 5: On the left, the correlation between the Subject Standardized Score (SSS) and the 
Human Detection Rate (HDR). On the right, the linear correlation between the SSS and the 
Search Computed Saliency (SCS). 
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The statistical analysis detailed in (Simon and others, 2009) showed that the proposed 
computational SCS model explains 56% of the variance between signs, and 39% overall. The 
same test using the 4th squared root of the road sign size instead of the proposed model SCS 
explains 46% of the variance between signs and 32% overall. Thus, the proposed computational 
saliency model improves the size-based mode by an increase of the explanation of the variance 
in an amount of 18%. 

4. Conclusion 

Most available computational models of the visual saliency are limited to objects pop-out, 
whereas the need for an automatic diagnostic system for road signs saliency implies to have a 
computational model of saliency during visual search task. We thus proposed a paradigm to 
define search saliency and a computational model to estimate the search saliency in an image 
within a search task using SVM. From our psycho-visual experiments, this computational model 
is correlated to subject's score of road sign saliency. In future work, we will test our 
computational model on other road signs, our goal being to develop a reliable automatic 
diagnostic system of road signs saliency. 
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