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Abstract

Road signs, the main communication media towardgdtivers, play a significant role in road
safety and traffic control through drivers’ guidanevarning, and information. However, not all
traffic signs are seen by all drivers, which somes lead to dangerous situations. In order to
manage safer roads, the estimation of the legilmlithe road environment is thus of importance
for road engineers and authorities who aim at ntakimd keeping traffic signs salient enough to
attract attention regardless of the driver's wa#lo

Our long term objective is to build a system foe #utomatic estimation of road sign saliency
along a road network, from images taken with atdigiamera on-board a vehicle. This system
will be interesting for accident analysis and preiwen since it will enable a fine diagnostic of
the road signs saliency, helping the road manageidd on which signs he must act and how
(replacement or background modification). This dtidead to improved asset management,
road infrastructure maintenance and road safety.

What attracts driver's attention is related botpggchological factors (motivations, driving task,
etc.) and to the photometrical and geometrical attaristics of the road scene (colours,
background, etc.). The saliency (or conspicuitypnfobject is the degree to which this object
attracts visual attention for a given backgroundadRsigns perception depends on the two main
components of visual attention: objects pop-out @asdal search. The first one is less relevant
when the task is to search for a particular obpbiereas one important part of the driving task
is to look for road signs.

As most of current computational models of visusdrsh saliency are limited to laboratory-

situations, we propose a new model to compute vsearch saliency in natural scenes. Relying
on statistical learning algorithms, the proposegbathm emulates the priors a driver learns on
object appearance for any given class of road sigms algorithm performs both the detection of
the object of interest in the image and the estonatf its saliency. The proposed computational
model of saliency was evaluated through psychoalisuperiments. This opens the possibility
to design automatic diagnostic systems for roadssggliency.

1. Introduction

The points on which the driver focuses his gazeeddmn the traffic situation, on the ongoing
driver task and on the saliency of the objectstiradato their background. Visual attention
(Knudsen, 2007) can be thought of as a two compgengrocesspbject pop-outand visual
search These two components are mixed during vehichardyi Theobject pop-outs only due

to the high saliency of the object which attradtergion, independently of the ongoing task. It is
a bottom-up process which applies when, for ing#aaa observer is looking at a meaningless
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picture. Thevisual searchwhich is a top-down process. It consists in a @ivelen process
linked to voluntary attention, which depends on thiver’s experience, the current task and
motivation. Searching for a specific detail in atpre is an example of pure visual search.

Figure 1: On the left, the focus of attention prdd by a bottom-up modgtti, 1998). On the
middle, focus points predicted as salient by oudehdor the search of no entry signs. On the
right, scan-path of a subject searching for no grgigns. The focus points are labelled in
decreasing order with a number inside each circle.

Although several computational models of the salydior object pop-out have been proposed in
the last decade, due to the complexity of humarawehr, it is only very recently that a few
computational models of the saliency for visualrsleehave been proposed. The most popular
computational saliency model was proposed in @808). This algorithm computes a bottom up
saliency map based on a modelling of the low lewélthe Human Visual System (HVS). This
model was tested against oculometric data anctdeseds when the observer task is to memorize
images, but as expected, it fails when the tadk search for an object, see (Underwood and
others, 2006). Fig. 1 illustrates this limit onoad scene: on the left the focus points predicted b
(Itti, 1998) are incorrectly spread on the wholage, whereas the observed scan-path is mostly
along the line of horizon as displayed on rightgea

To design an automatic system for the estimationoafl sign saliency along a road network
from images, a computational model of search sajies thus requested. Until recently, there
was no complete computational model, only theasétimodels of the search saliency or
computational models working only on simple laborat situations and thus not on road
environment. As a conseqguence, in (Simon and qtBéf¥/), we proposed a hew computational
model of search saliency, based on learning theappce of the sign(s) of interest in the
images. As explained first in (Simon and other)730 our paradigm consists in linking the
confidence in the detection with the search sajiesee section 2. Then, the approach was tested
by psycho-visual experiments on no-entry sign,escdbed in section 3.

2. Saliency estimation based on sign appearance fieag

The visual search task for a road sign is a detegroblem in terms of pattern recognition. The
search saliency of a given sign can be thus indegdras a measure of the difficulty to detect it in
an image.

2.1 Saliency estimation paradigm

To perform road sign detection in images, we useckently developed statistical learning
algorithms. The learning is performed from a sepaditive and negative examples of the signs
to be detected, each example being representedesguae vector. Positive feature vectors are
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samples of the appearance of the sign, while negdBature vectors are samples of the
appearance of a possible background, see Fig. i&. sEt of positive and negative vectors is
usually called the learning database. From thisluege, the Support Vector Machine (SVM)
algorithm (Schélkopf and Smola, 2002) is able ferithe frontier which splits the feature space
into positive and negative parts. After this leaghstage, the resulting classifier is able to set a
positive or a negative label to any new featurdarec.e to any window in a new image. This
classifier can thus be used to perform sign detedh an image at several scales using sliding

windows.
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Figure 2: Positive (top) and negative (bottom) séeamf the appearance of a no-entry sign.

The main advantage of the SVM is that the resultil@gsification function gives continuous
values and not only binary values as with mostsifi@ation algorithms. This classification
value is related to the confidence in the pattecognition: when it is higher than one, the
recognition is positive, when it is lower than zettee recognition is negative. The closer to zero
the classification value is, the more hazardousélegnition decision. Our paradigm is thus to
rely on a learning algorithm for modelling the apm@ce of the object of interest, and to define
the search saliency of a given window image asation of the classification value.

The input of the SVM algorithm, the learning datsdyas a set of feature vectors with positive or
negative labels. In (Simon and others, 2008) aserileed the experiments which allowed us to
select which features are adequate to represerapgpearance of an image window. We found
that a simple colour histogram is enough with tigective of “no-entry” sign detection for

saliency estimation. The choice of the kernel soalf importance to achieve correct detection
performance. As detailed in (Simon and others, O®®@ best choice appears to be the power

kernel k(x,x') =[x=x|" which allows for implicit adaptation to the datandity, unlike most
classical kernelso=1 in the following).

2.2 Saliency map
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Figure 3. Scheme for the computation of the seaadiency.
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The SVM classifier is applied at different scalesstiding windows in a road image. Each scale
results in a confidence map at a given scale ofpibstive classification values. The global
confidence map for an image is built as the maxinairthe confidence maps over the various
scales. Finally, to take into account the salieatyhe background around each detected road
signs, the global confidence map is corrected tptraating its local mean over the so-called
background-window. The size of the background-wimde of constant angular value set to 2
degrees, from our experiments in (Simon and otl#)89). The resulting map is defined as the
Background related Computed Saliency (BCS) mapicBRdhat the BCS is independent of the
size of the detected object, whereas it is knovat the size plays an important role in the
saliency. Thus, the positive connex componentseatacted from the BCS map and for each
component the Search Computed Saliency (SCS) is computed as:

SCSi) = 4/BCS)A)

where BCS(i)is the average BCS over the connex componant A(i) is its area. The search
saliency of each road sign can be summarized hy3Fig

The field of applications of this computational rebds not limited to the estimation of road
signs saliency by inspection vehicle; it shouldbagsrve Advanced Driver Assistance Systems
(ADAS), as explained in (Simon and others, 2009).

3. Experiments

3.1 Apparatus

DR A

<

[Hecord of subjects responses] [ Record of eye tracker data ]

Figure 4: Psycho-vision laboratory, including aneelyacker system used for psycho-visual
experiments.

In order to test the proposed model, we conductgmeréments in a display room which is
photometrically controlled, as shown in Fig. 4. Tim®m consists in subject's and advisor's
screens. The display device is equipped with a teneye-tracker (SMI) which tracks the
subject’s gaze to record fixations positions andation with an accuracy of 0.5 degree at a
frequency of 50Hz. The screen is 19" wide withieawng distance of 70 cm. Thus, the subjects
saw the road scene with a visual angle of 20 degréer each subject, 40 road images were
displayed, containing a total of 76 no-entry sighisese images were selected with various sign
appearances and background, leading to a largetyarfi saliency levels for the observed signs.
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3.2 Detection score and subjective saliency

Thirty subjects were asked to pretend they wenreedsiof the car from which the images were
taken. The experiment consisted in two phaseshénfitst phase, the subjects were asked to
count the no-entry signs, knowing that images waliddppear after 5s. In the second phase, the
subjects were asked to rate the saliency of eagntrg sign by giving a score between 0 and
10.

The analysis of the gaze fixations associated thighsubjects answers (reported number of no-
entry signs) allowed us to know whether the subjdetected each displayed no-entry sign. For
a given sign, the mean percentage of detection @Vsubjects gives the Human Detection Rate
(HDR).

In the second phase, due to the subjects variabilithe use of the score scale, all scores were
standardized enforcing for each subject the samas<imn law with mean value 5. Subject
Standardized Score saliency (SSS) (subject ingenelated to subjective saliency (of signis
defined by:

score; — E;(score))

SS4%i,j) = JE:(scorg, —E, (score,))

+5

3.3 Results

We first checked that the average detection rat& Hbrelated to the Subjective Standardized
Score (SSS). As illustrated in the left of Fig.tle greater the SSS, the greater the HDR. This
correlation between the subjective saliency scom@ the correct detection rate supports the
proposed paradigm: the search saliency is an ev@huaf the difficulty to detect an object.

Then, we studied the correlation between the Subge@tandardized Score (SSS) and the
Search Computed Saliency (SCS). As shown in thiet § Fig. 5, a linear relation can be

observed between the SSS and the SCS. As a conseqtige proposed computational model of
search saliency is correlated with the subjectadeescy. The link between the HDR and SSS
implies that the SCS is also correlated to the Hulatection Rate (HDR) which is a saliency
indicator.
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Figure 5. On the left, the correlation between th&hjBct Standardized Score (SSS) and the
Human Detection Rate (HDR). On the right, the linearrelation between the SSS and the
Search Computed Salien(§CS).
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The statistical analysis detailed in (Simon anderth 2009) showed that the proposed
computational SCS model explains 56% of the vaganetween signs, and 39% overall. The
same test using thé"4squared root of the road sign size instead ofpfoposed model SCS
explains 46% of the variance between signs and @28all. Thus, the proposed computational
saliency model improves the size-based mode by@ease of the explanation of the variance
in an amount of 18%.

4. Conclusion

Most available computational models of the visualiency are limited to objects pop-out,
whereas the need for an automatic diagnostic syftemoad signs saliency implies to have a
computational model of saliency during visual skatask. We thus proposed a paradigm to
define search saliency and a computational modektwnate the search saliency in an image
within a search task using SVM. From our psychaigxperiments, this computational model
is correlated to subject's score of road sign seajie In future work, we will test our
computational model on other road signs, our gaahd to develop a reliable automatic
diagnostic system of road signs saliency.
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